Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt A): 130152, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36244104

RESUMO

The utilization of auxiliary electrode can improve substantially the electrokinetic remediation efficiency of heavy metal contaminated soil. The increase in the auxiliary electrode performance is the key to further promote the electrokinetic remediation efficiency. In this study, two kinds of auxiliary electrodes, pure FeOCl and doped FeOCl with W and S, were prepared and used in the electrokinetic remediation of Cr(VI) contaminated soil. The system equipped with the auxiliary electrode doped FeOCl brought more stable system current (202 mA) and more uniform electric field than blank group (130 mA). The reduction rate of Cr(VI) was increased by 50% due to the presence of Fe2+ and S2-. The accelerating migration of ions by auxiliary electrode was responsible for the improvement in electrokinetic remediation efficiency. Density functional theory (DFT) calculation showed that Cl vacancy formation energies of pure FeOCl, S-doped FeOCl (S/FeOCl) and W-doped FeOCl (W/FeOCl) were 1.29, 1.15 and 1.49 eV respectively, and the ion diffusion barriers were 0.093, 0.099 and 0.148 eV respectively. Calculation results indicated that the doping of S was conducive to the diffusion of Cl ions, and the bonding of W-Cl was stronger than Fe-Cl. The charging and discharging process of auxiliary electrode became easier due to the formation of lower vacancy in S-doped FeOCl, which could bring a higher current for the electrokinetic remediation system. The electrochemical performance of FeOCl doped with W and S was improved obviously. This study provided a further explanation for the positive role of auxiliary electrode in electrokinetic remediation system.

2.
ACS Appl Mater Interfaces ; 13(7): 9064-9073, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33583175

RESUMO

Among various organic cathode materials, C═O group-enriched structures have attracted wide attention worldwide. However, small organic molecules have long suffered from dissolving in electrolytes during charge-discharge cycles. π-Conjugated microporous polymers (CMPs) become one solution to address this issue. However, the synthesis strategy for CMPs with rich C═O groups and stable backbones remains a challenge. In this study, a novel CMP enriched with C═O units was synthesized through a highly efficient Diels-Alder reaction. The as-prepared CMP exhibited a fused carbon backbone and a semiconductive characteristic with a band gap of 1.4 eV. When used as an organic electrode material in LIBs, the insoluble and robust fused structure caused such CMPs to exhibit remarkable cycling stability (a 96.1% capacity retention at 0.2 A g-1 after 200 cycles and a 94.8% capacity retention at 1 A g-1 after 1500 cycles), superior lithium-ion diffusion coefficient (5.30 × 10-11 cm2 s-1), and excellent rate capability (95.8 mAh g-1 at 1 A g-1). This study provided a novel synthetic method for fabricating quinone-enriched fused CMPs, which can be used as LIB cathode materials.

3.
Chemistry ; 27(20): 6340-6347, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33565175

RESUMO

Coordination polymer frameworks (CPFs) have broad applications due to their excellent features, including stable structure, intrinsic porosity, and others. However, preparation of thin-film CPFs for energy storage and conversion remains a challenge because of poor compatibility between conductive substrates and CPFs and crucial conditions for thin-film preparation. In this work, a CPF film was prepared by the coordination of the anisotropic four-armed ligand and CuII at the liquid-liquid interface. Such film-based micro-supercapacitors (MSCs) are fabricated through high-energy scribing and electrolytes soaking. As-fabricated MSCs displayed high volumetric specific capacitance of 121.45 F cm-3 . Besides, the volumetric energy density of MSCs reached 52.6 mWh cm-3 , which exceeds the electrochemical performance of most reported CPF-based MSCs. Especially, the device exhibited alternating current (AC) line filtering performance (-84.2° at 120 Hz) and a short resistance capacitance (RC) constant of 0.08 ms. This work not only provides a new CPF for MSCs with AC line filtering performance but also paves the way for thin-film CPFs preparation with versatile applications.

4.
Chem Commun (Camb) ; 55(61): 9047-9050, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292571

RESUMO

A benzene-free and vinyl-free molecule, azulene, is used to polymerize with sulfur through inverse vulcanization. The sulfur radical promoted reaction mechanism has been studied through solid-state NMR experiments combined with DFT calculations. The as produced polymer has high sulfur content and can serve as a cathode material for Li-S batteries with longer lifetime stability compared to pure sulfur, providing a new protocol to develop new cathode materials for Li-S batteries.

5.
Macromol Rapid Commun ; 35(3): 330-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356908

RESUMO

The novel hyperbranched poly(methyl acrylate)-block-poly(acrylic acid)s (HBPMA-b-PAAs) are successfully synthesized via single-electron transfer-living radical polymerization (SET-LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 µm in length, and 0.47 µm in width) are observed by the self-assembly of unimolecular micelles when pH value is below 2. Such self-assembly behavior of HBPMA-b-PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.


Assuntos
Acrilatos/química , Resinas Acrílicas/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular , Polimerização , Polímeros/síntese química , Polímeros/química
6.
Macromol Biosci ; 5(10): 974-82, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16208631

RESUMO

Surface-active microporous membranes were prepared from the poly(vinylidene fluoride)-graft-poly(2-(2-bromoisobutyryloxy)ethyl acrylate) copolymer (PVDF-g-PBIEA copolymer) by phase inversion in water. The PBIEA side chains could function as initiators for the atom transfer radical polymerization (ATRP) of 2-(N,N-dimethylamino)ethyl methacrylate on the membrane surfaces to give rise to the PVDF-g-PBIEA-ar-PDMAEMA membranes. N-alkylation with hexyl bromide and nitromethane gave rise to the quanternized PVDF-g-PBIEA-ar-QPDMAEMA membranes with polycation chains chemically tethered on the membrane surface, including the pore surfaces. The changes in the surface morphology and the surface chemical composition were confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy revealed that, in comparison to the pristine PVDF-g-PBIEA membranes, not only could the PVDF-g-PBIEA-ar-QPDMAEMA membranes remove the Gram-negative bacterium Escherichia coli but also inhibited the bacterial reproduction on the membranes to a significant extent.


Assuntos
Antibacterianos/química , Membranas Artificiais , Polivinil/química , Acrilatos/química , Escherichia coli/química , Microscopia Eletrônica de Varredura , Polímeros/química , Espectrometria por Raios X , Propriedades de Superfície
7.
J Colloid Interface Sci ; 265(2): 396-403, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12962674

RESUMO

The poly(acrylic acid)-graft-poly(vinylidene fluoride) (PAAc-g-PVDF) and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) (P4VP-g-PVDF) copolymers were obtained by thermally induced molecular graft copolymerization of acrylic acid (AAc) and 4-vinylpyridine (4VP), respectively, with the ozone-pretreated poly(vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) solution. Microfiltration (MF) membranes were prepared from the respective copolymers by phase inversion in aqueous media. The effects of pH of the coagulation bath on the physicochemical and morphological characteristics of the membranes were investigated. The surface compositions of the membranes were determined by X-ray photoelectron spectroscopy (XPS). The surface graft concentration of the AAc polymer for the PAAc-g-PVDF MF membrane increased with decreasing pH value of the coagulation bath. Completely opposite pH-dependent behavior was observed for the surface graft concentration of the 4VP polymer in the P4VP-g-PVDF MF membranes. A substantial increase in mean pore size was observed for the PAAc-g-PVDF MF membranes cast in basic coagulation baths of increasing pH. In the case of the P4VP-g-PVDF MF membranes, a substantial increase in mean pore size was observed for membranes cast in low pH (acidic) baths. The permeation rate of aqueous solutions through the PAAc-g-PVDF and P4VP-g-PVDF MF membranes exhibited a reversible dependence on the pH of the solution, with the membranes cast near the neutral pH exhibiting the highest sensitivity to changes in permeate pH.


Assuntos
Resinas Acrílicas/química , Polivinil/química , Acrilatos , Adsorção , Filtração , Concentração de Íons de Hidrogênio , Membranas Artificiais , Microscopia Eletrônica de Varredura , Modelos Químicos , Polímeros/química , Espectrometria por Raios X , Temperatura , Compostos de Vinila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...